International: +1-(617)-969-5452  Toll Free: 800-370-5452

Applications

Cell Disruption

Cell Disruption, Cell Lysis, and Homogenizing equipment to break cells with high efficiency and maintain intracellular content integrity - with easy downstream purification

Cell disruption is the process of breaking cells to recover and maintain the intracellular content integrity with high efficiency.

As cells are harvested and produced containing molecules or particles of interest such as proteins or viruses, they must be lysed to capture the intracellular contents of interest if they are not extracellularly secreted.

 

EXPLORE

Cell Disruption using the Microfluidizer® Method

Microfluidics cell background

Your Challenges

Cell Disruption

Finding a single technology capable of lysing a variety of cell types can be difficult.

In addition, it can be hard to achieve high rupture rates without introducing a temperature increase or excessive force which may damage/denature the material such as proteins, enzymes, or viral vectors.

Separating the proteins of interest from cell debris downstream is also challenging.

How We Can Help

Cell Disruption Technology

Our Microfluidizer® Processors achieve the highest levels of cell rupture and product recovery for all these different cell types through their ability to supply constant, controlled shear rates.

The resulting large cell membrane fragments make downstream processing easy. 

Efficient cooling ensures proteins stay intact even with high-pressure processing. Protein yields are high.

Our Experience

90 Years of Applications Development

Let us use our collective 90 years of applications development and machine engineering experience to help drive your product to market as quickly as possible.

Our range of Microfluidizer® processors offers the opportunity for full scalability from lab to production.

Our Approach

Microfluidizer® Technology for Cell Disruption

Microfluidizer® processors are designed to be simple to use and clean with the option of conforming to cGMP requirements. 

We pride ourselves on the reliability of our machines that offer constant shear rates throughout the processing cycle.

HubSpot Video

FREE ADVICE
for Cell Disruption

Request your free no-obligation consultation. Let us help you solve your nanoemsulsions challenges.
Request
In Detail

Microfluidizer® Processor Technology for Cell Disruption

Cell Disruptors, Cell Lysis and Homogenizing equipment.

Cell disruption is the method or process for releasing biological molecules from inside a cell.

Utilizing these intracellular contents (proteins, organelles, DNA/RNA, enzymes and Adeno-Associated Virus (AAVs) Vectors for Gene Therapy Applications) which are found and/or grown inside cells is the next generation for drug development.

For cells that do not secrete these intracellular contents, it is vital to lyse the cell to liberate these contents. During this process, it is important to prevent denaturing of these intracellular components by the unnecessary elevation of temperature or excessive shear rates.


Read more about cell lysing for gene therapy

 

 

 

Our Microfluidizer® processors effectively rupture a variety of cell types which require different levels of shear — including bacterial, mammalian, plant, insect, fungi, algae and yeast cells — whilst ensuring high protein recovery.  They are tough on cell walls but gentle on the intracellular contents.

Our LM20 Microfluidizer® high-pressure homogenizer can handle the toughest of cell types.  The LM10 Microfluidizer® homogenizer ensures repeatability and is simple to operate.

These capabilities allow researchers to use the lowest shear rates possible to reach target rupture rates while avoiding the denaturation of intracellular contents.

RELATED ARTICLE: WHAT IS CELL DISRUPTION

LEARN MORE ABOUT CELL DISRUPTION

FURTHER CELL DISRUPTION RESOURCES

 

Microfluidizer® processors provide many demonstrable advantages over all other cell disruption methods and equipment - for both lab and production volumes.

Cell Disruption with the highest levels of protein recovery

Cell Disruption - Protein

 

Read more about  different types of cell disruption techniques

 

 

Yeast Lysis (S.Pombe)

 

Before

After

cellrupture yeast before

 

cell rupture yeast after

 

Yeast Lysis (S. Pombe) Before and After processing on the Microfluidizer® processor for 5 passes achieving ~95% lysis

 

Microfluidizer® Technology Benefits for Cell Disruption.

Highest Protein Integrity Recovery

Precisely controlled shear rates enable Microfluidizer® technology customers to use the minimum pressure required to rupture the target level of cells while keeping proteins intact. Compared with other cell disruption techniques, the Microfluidizer® processor yields several times the amount of recoverable, usable protein. See a compilation of peer-reviewed publications that highlight the performance and advantages of using a Microfluidizer® processor for cell disruption

Efficient Cooling

Cooling is extremely important in cell disruption because cell contents are typically temperature-sensitive. Immediately after rupturing, the Microfluidizer® heat exchanger minimize the amount of time the sample experiences elevated temperatures and the lower temperatures combined with shorter processing times result in reduced denaturing and increased yields.

Ease Of Use

Microfluidizer® processors were designed with convenient homogenization of cells and productivity in mind — that’s why they are simple to operate and easy to clean. Using a Microfluidizer® processor in a lab requires no specialized skills or knowledge and initial training is provided during machine install. Customers appreciate how little maintenance is required, especially when compared to high-pressure valve homogenizers that have valves that need to be disassembled and cleaned manually, which is important especially in a multi-user environment to limit cross-contamination.

Simple Downstream Processes

The Microfluidizer® technology breaks cells gently yet efficiently, resulting in large cell wall fragments. The large fragments are easier to separate from the much smaller cell contents. Filtration times are shorter and the need for centrifugation is reduced.

Pressure and the number of passes can be set to shear DNA if desired. Shearing the DNA makes downstream pipetting of small volumes of cell lysate simpler and more accurate.

Processes at a Constant, Controlled Shear Rate

Continuous processing at constant pressure and shear rates ensures that all cells receive the same amount of energy input. With sonication, cells closer to the probe receive exponentially more energy than cells farther from the probe; batch-processing methods provide little control of energy uniformity to each cell. Some cells remain unbroken, others die or the intracellular contents denature due to the uncontrolled temperature rise of sonicator probes. Monitoring the temperature of a volume of cells cannot tell you what has happened to the majority of cells in a sample. This is why Microfluidizer® processors give higher yields than sonicators. Processing at lower shear rates make it possible to rupture mammalian cells with high efficiency for the harvest of Adeno-Associated Virus (AAVs) Vectors for gene therapy.

Peer reviews of the Microfluidizer  capabilities in cell disruption

No Contamination

Microfluidizer® machines offer media-free, negligible-wear processing that eliminates contamination of your sample.

Guaranteed Scalability

Unlike other technologies used to rupture cells, Microfluidics guarantees scale-up from lab and pilot volumes to full-scale production. The ability to scale up from lab to production volumes is a highly valuable tool for cell homogenization researchers — and an area where our processors shine. Unlike Microfluidizer® processors, high-pressure valve homogenizers involve changes in the way the cells are ruptured to accommodate the higher flow rates, which results in inconsistency when scaling up. When you use a Microfluidizer® processor, scale-up performance is guaranteed.

Flexibility

Microfluidizer® processors are capable of handling a wide range of cell types by optimizing pressure and cooling.

Small Sample Volumes

Our LV1 Low Volume Lab Machine is capable of cell homogenization in samples as small as 1 ml.

Advantages in the Lab

Lab Scale Microfluidizer® technology process cells rapidly (up to several hundred ml/min) from small sample volumes (as small as 14 ml to several liters). Our machines utilize advanced technology to rupture even the most challenging cells, and enable multiple research groups to use the processor for diverse applications.

Advantages in Production

The ability to scale up from lab to production volumes is a highly valuable tool for cell homogenization researchers — and an area where our processors shine. Unlike Microfluidizer® processors, high-pressure homogenizers involve changes in the way the cells are ruptured to accommodate the higher flow rates, which results in inconsistency when scaling up. When you use a Microfluidizer® processor, scaleup performance is guaranteed.

Cell Disruption Methods

Advantages of Microfluidizer® Technology compared to other Cell Lysis techniques:

  Microfluidizer Homogenizer Sonicator Bead Mill
Continuous Yes Yes No No
Scalable Yes Limited No Yes
Optimal Temp Control Yes Yes No No
Contamination free Yes Yes Yes No
Minimum Volume 1ml 10ml 1ml 1ml
Constant shear rate Yes No No No

 

High Pressure Valve Homogenizers: After a Microfluidizer® processor, a high-pressure valve homogenizer for cell disruption is the next best alternative. Prices are typically comparable, although cooling, cleaning, valve wear and scalability can be issues. The Microfluidizer® technology provides superior quality and usability of ruptured cell suspensions for increased yield.

French Press: When using a French Press for cell disruption, a manually controlled valve releases the pressurized fluid from a pressure cell, resulting in cell rupture. This method of cell disruption is not scalable or repeatable. A French Press is difficult and time-consuming to clean, and the unit must be cleaned after every sample. Most manufacturers of French Presses have discontinued production, although some outdated units are still in use.

Ultrasonication: This method of cell disruption or cell lysis uses cavitational forces. Often used for very small sample volumes, the cell suspension is sonicated with an ultrasonic probe. Disadvantages of this technique include local high temperatures, resulting in low yields; scalability challenges; and noise. Advantages of this cell disruption technology are low equipment prices and the ability to process small scale volumes.

Freeze-thawing: Subjecting cell suspensions to variable temperatures results in rupture of cell walls. This cell lysis technique is not a very reproducible method, results will vary, and the technique is only suitable for very small samples.

Chemical Cell Lysis: This approach to cell disruption involves adding chemicals that soften and rupture the cell walls. Chemicals can be costly and thus scalability is limited. These chemicals contaminate the preparation which is often undesirable.

Mortar and Pestle: Manually grinding a cell suspension is a laborious process that can take several minutes, making it not scalable and not very repeatable, suitable for small lab samples only.

Media Milling: Contamination by media and temperature control are difficult, but otherwise media milling can be an effective method for disrupting many cell types.

See how Microfluidizer technology  compares to other  cell disruption techniques

Free consultation

Do you need help selecting cell disruption technologies?

Let our team of experts guide you through your options.

Resources & Guides

High Pressure Cell Disruption

Recommended downloads on equipment and methods.